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Abstract: In this paper, we derive kinematic and Newtonian equations in terms of time. 
The paper sets out to prove that the kinematic equations are derived from infinite time 
convergences as predicted by Gauss and Boltzmann. 
 
 
We can show mathematically, with the theory derived by Gauss and Ludwig Boltzmann, 
that the distribution of energy is distributed in an infinite Dimension of time. [1][2] 
 
  

 

  f (vz ) = Ae
−mvz

2

2kT  

  
e− x2

−∞

∞

∫ dx = π  

  
x = m

2kT
vz  

  
A 2kT

m
e
−mvz

2

2kT

−∞

∞

∫
m

2kT
dvz = 1  

  
A = m

2π kT
 

 

  
f (vz ) = m

2π kT
⋅e−mvz

2

 

 

 
 
 
 
 
 

  f (E) = Ae−E /kT

  
vz

2 = m
2π kT

vz
2

−∞

∞

∫ e
−

mvz
2

2kT dvz



	 2	

Notice the infinite integral. As the heat distribution converges in infinite systems. 
 

 

 

 

 

 
This solution proves that the energy is stored in infinite convergent signals. 
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We Begin by solving the Heat Kernel which while provides us the solution to study the 
distribution of heat in the universe. I used the following two papers. 
Deriving the Heat Kernel in 1 Dimension by Ophir Gottliev [3] and Infinite Spatial 
Domains and the Fourier Transform by Matthew J. Hancock [4]. Matthew Hancock paper 
also shows that the energy of the universe converges with an infinite thermal distribution.  
 
The solution for the heat kernel is as follows: 

 

 

 

 

 

 

 

 

 

 
 

  
 

 
 

 
Now we note that we expect . Consequently, we expect  
as . Therefore c = 0. We have the ODE 
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Integrating and simplifying we get: 

 

 

Where creates the initial function. 
 

 
 
As the Velocity Increases the heat radiation diminishes. Where x is the velocity of the 
matter particle. As the velocity decreases radiation acceptance increases. 
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We can solve for the initial constant as follows. 
Given a probability distribution, by conservation of energy and probability theory says 
that the probability distribution is equal to one when the curve is integrated, we find. 
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Plugging in for t, and solving for the Gaussian Function we get: 
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This result is very important because x is really the speed of the signal. 
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We will use this result to derive the kinematic equations. 
 
 
We can derive all the kinematic equations from the heat equation 
definition as follows: 
 
The kinematic variables are D (distance), V (velocity), a (acceleration), t (time), c (speed 
of light. 
 
Where the Speed of Light is given by epsilon: 
 
Recall that  
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Where the Velocity is given by: 
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The kinematic equations derived by Galileo Galilei are as follows: 
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Where this is an average thus it’s divided by 2. 
 
Thus, The distance is as follows. 
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We can verify the velocity again with the kinematic expression. And we find that it’s the 
same velocity derived from the heat equation Epsilon Relationship: 
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When the dimensionality for D increases, in signals, you increase the kinetic energy of 
the particles.  
 
We can solve for the next Kinematic Relationship. 
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Inputting the component parts into the expression we find that the energies are the same. 
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Where the half on the left side expresses the average energy. 
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It is important to note that this kinematic relationship is an energetic relationship. 
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We can look at the energetic relationships. 
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Where this is an average energy value that depends on your rest mass energy. 
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We can derive what mass is in the following derivation. Given that pure light only 
has velocity and no mass. We equate it to a mass particle that has rest mass. 
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Plugging in for the terms: 
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And thus mass is time! This result is extremely useful for advanced physical 
applications.  
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Thus we conclude from the Energetic relationship by substituting for time. 
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Solving Louis de Broglie Relationship 
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Its important to note that this discovery applies to all equations in physics.   
Substituting the time you can simplify all advanced topics in physics and you can 
create advanced derivations by reverse engineering all of the physical equations by 
using unit analysis.  
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